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ABSTRACLT

This Report deals with the modulation of signals by discrete random
and random-like sequences which may change state only at integral
multiples of some basic time division ¢,. These signals may be modu-
lated (sampled) in many fashions, depending mainly upon the types
of sequences and signals available, the desired output phenomena, and
the sequential rate.

In general, a sequence may sample a set of signals at random, or it
may sample in some fixed deterministic fashion. Furthermore, deter-
ministic processes may be constructed to possess certain random-like
qualities. Special attention is given in this Report to random Markov
chains and linear pseudo-random sequences; the signals selected for
modulation are not restricted to any one class, and examples are given
for sinusoids and square waves.

Specifically, the effects of carrier-signal waveform and type of
sequence upon the over-all power spectrum are considered. In the case
of sinusoidal modulation, the effect of phase shift is investigated.

I. BASIC CONCEPTS

The notion of having a signal or set of signals modu-
lated by a sequence is not new in the field of communi-
cations. In fact, the whole theory of transmission of coded
information by multiplexing, frequency-shift keying
(FSK), CW telegraphy, etc., has used this concept for
years. In CW telegraphy, a sequence (called Morse Code)
chooses between a signal (carrier) and an absence of
signal. In FSK systems, a sequence (called teletype) is
used to choose between the two radiofrequencies which
are transmitted as information. Frequency-modulated
multiplex carries this process a step further, allowing a
sequence (called the sampler) to gate between a number
of signals so that several information channels are sand-
wiched together in transmission.

In this Report, a sequence is defined to be a discrete
time function which may change states only at integral
multiples of some basic time division f,. Furthermore, the

number a of states is finite. If these states are limited in
some fashion to a set of signals which the sequence 1s
allowed to sample, the sequence is said to modulate the
set of sampled signals. The set of signals is called the
modulated set of signals.

The sequences which modulate the carriers in these
systems miay, in general, appear random, as in the case
of telegraphy, or strongly periodic, as in the case of
multiplex with slowly changing channels. Sometimes, the
sequences are specifically chosen to have certain proper-
ties, in order to minimize noise and other undesirable
effects (Ref. 1).

An attempt has been made to treat sequence-modulated
processes in general, and in such a way that the reader
has a physical insight into the inner workings of the
mathematical models. For this reason, a short section en
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fundamentals is included. Appendices 7~ added to the
main text to provide a more rigorous mathematical basis
for sume of the ideas, to derive certain results, and to
expand upon certain concepts which the authors consider
too involved to include in the text proper.

Of basic importance in this Report is the question of
the spectral distribution (Refs. 2 and 3) of such sequence-
modulated devices. In particular, the spectral density
of signals modulated by random Markov chains (Ref. 4)
(the discrete anaiog of gaussian processes) and by
random-like sequences which loock Markovian (with
respect to spectral density) are to be considered.

Section II treats the aperiodic Markev process gener-
ally, and two special cases are considered in detail. One
outstanding result derived in this Section is the necessary
and sufficient condition for the absence of spikes in the
spectral density of a Markov process. This simple con-
dition states that the sum of the probability-weighted
sampled waveforms must vanish for all time values:

The two special cases mentioned above are processes
which allow certain simplifications to be made in the
spectral equation. e first of these is a process that
allows the sequence to sample the signals hi(t) and
—h,(t) without discrimination (that is, without bias as to
which is the “positive™ and which is the “negative™ sig-
nal). This process, called NEP (negative equally prob-
able), has a spectral density which is merely the weighted
sum of the energy spectra of the signals over one basic
time unit; there are no spectral spikes present. Such
a process, while being mathematically quite simple to
maripulate, is physically difficult to realize. This diffi-

culty arises from the inability to create a sequence which--

changes states instantly; that is, a sequence which is
usable in a modulation scheme must be some sort of
electrical signal (see Fig. 1) and therefore has certain
undesirable aspects as a result of non-zero rise times. For
examp's, let a sinusoid carrier be multiplied by +1 or
—1, as .ictated by a binary sequence. This process may
be mechanized by a phase-modulator which swings +90
and —90 deg with the incoming (non-perfect) sequence
voltage. The desired 180-deg change does not occur
instantly; hence, the carrier goes through all intermediate
phases in the transit. It is found experimentally that this
does not change the over-all spectrum too greatly if the
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transition is rapid; however, as the condition becomes
more serious, spikes begin to appear in the spectrum.

The damaging factor in the scheme is the inability of
physical equipment to mechanize a discontinuity in the
slope of a signal. Cne obvious solution to this problem
is to eliminate the discontinuity at transition times, at the
same time maintaining the condition for no spectral
lines. This, too, is difficult to generate, and therefore the
remaining alternative is to try to reduce the discortinuity
at transitions by requiring the signal to preserve the sign
of its slope at these times. When the carrier signals are
sinusoids, this means that the modulation allows a jump
between frequencies uuly when the carrier passes through
zero, and when the waveform of the new frequency also
goes through zero in the same direction. This is the second
type of Markov process discussed in Sec. I1.

The second Markov process, called NEPS (negative
equally probable-same sign slope), is one in which the
over-all probability of sampling h;(t) is the same as for
—h, (t); however, transitions between states are restricted
in such a fashion that the slope of the modulated wave-
form does not change sign, so that the transition is a
smoother one. Since sampling probabilities are equal,
there are no lines in the NEPS spectrum, and because
of the smoother changeover, the spectrum around peaks
falls off more rapidly (Ref. 5) than the NEP counterpart.

Random sequences are generally easy to work with
mathematically because of certain averaging procedures
available. These processes allow the calculation of spectra
based upon a statistical approach to a signal-modulation
scheme. On the other hand, a statistically random
sequence is sometimes not desirable as a modulation .

‘technique. For example, a multiplex receiver must know

the code used at the transmitter to decode the incoming
signal into the separate channels.

It would be desirable, then, to be able to generate some
sequences deferministically, in such a way that some of
the properties of purely random signals are inherent in
them. The type of random property, of course, dictates
the type of sequence which may be geaerated.

Pseudo-random (Ref. 6) sequences are periodic
sequences which have certain random-like properties and
are commonly gencrated by some recursive function of
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past states in the sequence. When the generating logic
is linear, the sequence is called a linear recurring sequence

(Ref. 7). :
The spectral density of linear sequences is fcund, and

again two special cases are considered. These are called -

the NEF (negative equally frequent) and NEFS (negative
equally frequent-same sign slope) processes and are
merely the periodic -analogs of the NEP and NEPS
Markov processes. It is shown that the binary NEP and
NEF spectra appear to be the same when the period of
the linear sequence is long; also, the 4-level NEPS and
NEFS spectra under the same restriction are greatly alike.

Examples of each process are given for modulated
sine waves and square waves, and experimental curves
are plotted along with theoretical calculated values.

A. Fundamentals of Signals

There is associated with each signal y(t) a function
R (t,7), called its autocorrelation, and a function G(f),
called its power spectrum (Refs. 2 and 3). These func-
tions are completely determined by the properties of
y {t) and do much in specifying the character of y (f). The
quantities are given by

R(t7)=E[y()y( + )]
G(f) = im SZE[[Y- (A7) )

where E[X] is the mathematical expected value of X,
and Y,(f) is the Fourier transform of the signal yr(t),
defined as y (¢) over a range (—T, T) and zero elsewhere.
The first Equation indicates that R (¢, +} is a measure of
the similarity between the signal at times tand ¢ + . It
often occurs that this similarity does not depend on the
starting “me at all but only on the time difference r
between samples. When this is the case, y (t) is said to be
stationary {in the wide sense), and its correlation is

22 g

R()=tim o= | 3y +nd )

This Equation is restricted, however, to signals whose
time averages are the statistical expected values as stated
above (the so-called ergodic property). This condition
need not cause great concern, since all signals in this
Report shall be assumed to have this property.

The quantity G(f), on the other hand, gives a measure
of the distribution of power throughout the frequency
domain; that is, it indicutes the frequencies at which the
signal power exists. When the distribution is continuous,

-it is called a continuous spectral density, and when con-

centrations of power occur at discrete frequencies, G (f)
is said to be a spike (or linc) spectrum. Often, signals
possess both types of spectra.

Since both R(r) and G(f) are functions of y{t), one
might suspect that there exists a relation between R(r)
and G (f) which excludes the signal y () itself. This, in
fact, is the case and is called the Wiener-Knintchine
relation (Ref. 2):

Gif) = / :R(f) e dr = 2af

R(r) = / :‘G(f):‘i-"df )

This relation states that the two functions are Fourier
transforms of each other. The Fourier transformation is
biunique; that is, if G (f) has a transform, then it has only
one such transform, completely determined by G (f), here
designated as R (s). Conversely, if R{s) has a Fourier
transform, it is G (f). However, many signals may have
the same autocorrelation function, since R(r) is not a
function of the time origin of its generating signal.

Similarly, a cross-correlation function inay be defined
in terms of two signals, v, (f) and y. (#):

T
Rix(7) = lim 5 f (4 ) de @)

The transform of this function is known as the cross-
spectral density G- (f). The functions G, (f) and R,: (r)
form a Fourier-transform pair in exactly the same fashion
as did R (r) and G (f) of Eq. (3). Correlation functions on
a set of given signals may be put into a matrix, called the -
correlation matrix; similarly, the matrix of spectral densi-
ties is called the spectral natrix.

It is well known that periodic signals possess periodic
correlation functions, and that the spectra of such sig-
nals are composed entirely of impulse functions at mul-
tiples of the fundamental frequency of the correlation.
Furthermore, it is known that the Fourier transform of
a periodic process x (t) is of the form (Refs. 3 and 5)
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x( =20 5 5(s-2) %)

where T is the period of x(f) and X, (f) is the Fourier
transform of one cycle of x(f). If x(f) is assumed to be
an autocorrelation function, thean the corresponding
periodic signal has power spectrum

c-0 % or-2 ©

where

G.(f) = / Ryetordr,  w=2ef ()

T/2

Equation (6) shows that a periodic signal has a power
spectrum composed entirely of spikes, weighted by an
“envelope.” This envelope is the power spectrum of the
aperiodic process which has identical correlation in the
range (—T/2, T/2), and is zero elsewhere. (If the auto-
correlation were a non-zero constant outside this range,
this would only change the de power level in the spectral
density, and if it were non-zero, but only approximately
constant, the envelope would be in slight error, depend-
ing on the gravity of the fluctuation outside the specified
range).

B. Sequence Modulation

The fundamentals described in Part A will be used in
this Report basically to find specific power spectra from
a device shown in Fig. 1.

Briefly, the system works as follows: At regular ¢,
time intervals, a clock pulse causes a sequence generator
to send the next element of the sequence to a modulator.
This element of the sequence is chosen to be one of cer-
tain quantities E,, - - - , E,. The modulator is composed
of the signals h, (2), - - - , h. (), which exist only in the
interval (0, t,). The sequence element E; is essentially the
statement, “Let y (f) in this £, interval be the signal h; (t),
shifted to the present time.” That is to say, the sequence
{E;} may be regarded as a sequence of decisions as to
which signal shall comprise y(f) at any given time. In
this light, the sequence may be regarded as one of Dirac
delta-functions 8; (t — mt,), each element of which con-
volves the modulating signal h; () to the time interval
[mto, (m — 1) &,).

Poge 4

SEQUENCE
| GEnERATOR MODULATOR |—» outeuT, y(n
A
WAVEFORM
c:_’c.acx GENERATOR
A, pa1}

Fig. 1. Sequence Modvulation Technique

For the purposes of discussion, the system, as shown
in Fig. 1, may be replaced by the one in Fig. 2, in which
modulated functions {h; (f)} are now the unit-impulse
responses from the ith input to the output. The a inputs
are delta functions sent from the sequence generator.
The ith input signal is a series of delta functions at those
times at which the sequence generator requires h; (f) to
be the output signal. Designating the ith such input to
be 3 (¢)

5 (=38 — m) (®)

where m takes on only the proper values described above.

3,(n) :
SEQUENCE | 8:(N _
GENERATOR 2 (NERR s outuT, 40
n |
{34n, 30} B 2] 2

4

CLOCK

Fig. 2. Mathematical Model for Fig. 1

The transfer function between input i and the output is
merely the Fourier transform of h; (t), H; (f). The network
is linear, so that superposition is allowed, and the output
(Ref. 3) is

Y(f)'—'élAiU)Hs(ﬂ %)
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with A; (f) fbe transform of 3, (t). According to Eq. (1),
the spectrum is

. l L -
G(h= lim == $ 3 s, (DA NHNHGM (19)
T i=1k=1
where H?} is the complex conjugate of H,.

Notice the term lun (1/2T) A% (H) A, (f) in this equa-
tion, which appears as some weighting function for
the term H(f) H.(f). This weighting function, which
shall be designated as G (f), is

G ()= lim 572%,(1) 34, () (1)

whose transform may be found by convolution; that is, if

ZO=X{NHY(f)
then
z(l)=[; x(r)y{t = 7)dr (12)
The transform of Gi; (f), therefore, is
Rix(r) = l;n;’;:/ B(M&G+nd  (13)

From this it is seen that R () is a correlation function,
namely, that correlation which exists between the states
E; and E; of the sequence.

This result may also be derived in a much more rigor-
ous fashion, as is done in Appendices A and B.

The R (+) are correlations betwcen the states in a
single sequence. This allows a single sequence of a
states to be thought of as being a binary sequences, each
zero everywhere except in that interval during which
the original sequence is E;, at which time the ith binary
sequence is non-zerc. Since there is really only one
sequence, the Rix(r) are actually “autocorrelations” of
some fashion or another, and the whole correlation matrix
is also some form of correlation of the sequence with
itself. However, it is difficult to assign meaning to auto-
correlation of a seauence when its states are decisions.
It is for this reason that it was decided to break the

single sequence into a parallel binary sequences, each of -

which (the ith) is of the form “no E;-yes E;" or "0-1."

&

Notice in the spectral density of the output

=3I GuDHNHD 09

»
-

b

that all sequences which allow the products H; (f) Hi (f)
to be weighted in the same fashion produce identical
spectra. Therefore, if two sequences modulate a set of
aperiodic signals {h; (f)} which exist only in the ‘nterval
(0, t,), then the power spectral densities of the two
signals are identical if the sequences have the same cor-
relation matrix.

If the sequence is a periodic one, with all correlation
functions having the same period T, then each may be
written in the same form as Eq. (6), so that the power
spectrum is given by the Equation

éi 3-:“ G, () H: (f) H, (f)] S (/ - .;_')
(15)

where G, is the Fourier transform of one cycle of Rix (7).
Notice in Eq. (15) that the term in brackets is the power
spectrum of a process whose correlation functions in the
range (—T/2,T/2) are identical to those of the periodic
process and zero outside this range (or constant, or
nearly constant, depending on the degree to which a
change in dc level and/or a slight deviation in envelope
is acceptable).

(=7

Basically, what has been shown by this discussion is
that given a time sequence, each state of which chooses
a specific element of a sampied set {h; ()}, the power
spectrum depends upon certain spectral densities of the
sequence and upon the energy spectral densities of the
sampled waveforms. The remainder of this Report is
concerned with determining the cffects of modulated set
waveform and type of time sequence upon this power
spectrum. There are, however, a few general remarks
which can be made before these special cases are applied.

Consider a segment of a given sequence of length
2Lt,. During this interval, transitions between states of
the sequence occur, giving rise to the numbers of tran-
sition N{», which indicate the number of times which
state E; occurs at the nth transition after E;. Obviously,
the total number of times E; occurs in this length 2Lt,
is

Ny = é Ny

=3

(16)
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In terms of these numbers, define the quantities

i NG
i =E[Ji'i'ﬁ:]
P [32’:3::]

when such quantities exist.

and

(17)

These quantities are the relative frequencies with which
certain transitions occur and the stationary frequencies
of occurrence, respectively. If the process is random,
these quantities are known as the probabilities of transi-
tion and occurrence. If the process is periodic of length
pto, then the quantities p!}’ are also periodic, with period
p at most. Specific processes are discussed in greater
detail in later Sections of this Report.

The sequence correlations are
A 1 ~Lty
Rik (T) = Jmm[l.“ 85 (f) 85(‘ + f) df (18)

These functiens are impulses at those values of 7 such that
both r and ¢ are integral multiples of t,, E; having occurred
at time ¢ and E; at ¢t + r. Obviously, if r = nt,, the num-
ber of times this criterion is met in a given length 2L
is N2 for r positive. N7’ for r negative, and N7 = N;
for r zero. Then

Ri(7) = :l_r‘n E[ZU 8.:3(7)
+ E 8(1'

= ‘1‘{1’6 3.3(7)

+ *;' P-P"’ §(r—m,) + i o P (r + ,,;o)}
(19)

nt,) + 2 8 (r+ mo)]

The G (f} functions are

Gulf) = ’l{Pa St pi i PP etonte + p, i'”‘? ,«Jmu.}
° n=1 n=

(20)

It is interesting to note from this Equation that

G (H) = G1: (f), and therefore the over-all power spec-
trum of the signal is

G =5 T nIH O
+ ;z;ke 2 é, H (f) He (f) Pix (e-7%%)
(21)
where
P (etot) = .,%:-, PR e-tuten (22)

In sume cases, the time sequence generating the transi-
tions may be partly periodic and partly aperiodic. In
such cases, these parts are calculated separately.

When a substitution == e/** is made in the func-
tions P;; (e-7#%), the resulting functions Pix (z) are known
as the generating functions of the sequence. Similarly,
the matrix P (z) containing these functions is the generat-
ing matrix of the sequence. The variable z is chosen for
reasrns discussed in the Part on Markov processes.

So far, the analvsis given has been general and applies
to any sequence which changes states at integral multi-
ples of a basic time division f,. The sequence may be
either periodic or aperiodie, except that use of Eq. (15)
is limited to periodic sequences in which all correlation
functions have equal periods T.
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il. RANDOM SEQUENCE MODULATION

A. The Markov Process

Part A of the preceding Section developed the basic
power spectrum of a modulated sequence without regard
to the type of sequence, except that it was one of discrete
states which could change at multiples of a basic time
division #,. The d .crete states themselves were not lim-
ited in any fashion, except that there were only a fnite
number a of them, and that each state might be con-
strued to be seme sort of decision. This part of the Report
derives the power spectrum when the sequence is an
aperiodic Markov chain.

The aperiodic Markov chain (Ref. 4) is a random
sequence of the states E,, - - - ,E,, such that the prob-
abilities of sample sequences § are of the form

P[(E; Ejy -5 E5 )] = PioliosyPirtz " " Pru—zin-sin_1in
(23)
in terms of an initial probability distribution {p:} for the
states {E;} at an arbitrary time (zero), and fixed condi-
tional probabilities p;x of Ei, given that E; was the pre-
ceding state of the sequence. This merely indicates that
at time zero there exists a certain probability distribu-
tion {pi} as to which of the set {Ei} of states will be the
first element of the sequence. After this, given that the
sequence state at time n is E;, the probability that F;
occurs next is pi. The over-all probability of having a
certain sequence of these states occur is the product of
the probability that the first occurs times the probabili-
ties that each state is followed by its proper successor.

The transitional probabilities p:: may be arranged in a
matrix P, with p;; in the ith row, kth column. Such a
matrix is called the transition matrix or stochastic matrix.
This matrix P, together with the initial distribution {p:},
completely determines a Markov chain.

The quantity p!y' is defined to be the probability that
state E; occurs at the nth transition after state E;.
Obviously, this is

P =3 05 o

i) =p (24)

The transformation z = e7** in the generating func-
tions P;x(z) bears great resemblance to the z-transforms
of linear sampled-data systems (Ref. 8). This concept is
even more strongly supported by consideraticn of the
Markov process on a flow-graph, as shown in Fig. 3.
This Figure indicates the states E,, - - - , E, by a nodes
and the transitional probabilities p.x as arrows connect-
ing these nodes.

£, -» TRANSITION PROBABILITIES
O SEQUENCE STATES

Fig. 3. Flow Graph of a Markov Process

When each term of the graph is multiplied by = (Fig.4),
and a unit input to E; is applied, the output at E; is
found to be exactly the same form as Eq. (22} (Ref. 9).
This leads to the conclusion that P (z) is the transfer
function between E; and E; when each leg of the flow-
graph of the Markov process is multiplied by =.

The entire generating matrix P (z) may also be found
by using Eq. (24)-

P(z)= ‘2‘1’“:“ (25)

By these two methods, the gencrating functions may be
found. There are other methods which are especially
useful in special problems (Ref. 4), but these are beyond
the scope of this Report.

The remaining quantity to be found is the contribu-
tion of the periodic part of the conelation Ry (7) to the
terms G (f). If the Markov chain is aperiodic, then p'}
approaches p; for large n; that is, after many transitions,

Paga 7
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Em
EACH TRANSITION PROBABILITY MULTIPLIED BY 2.
TRANSFER FUNCTION BETWEEN NODES / AND /
IS THE GENERATING FUNCTION p,; (2).

Fig. 4. The z-Multiplied Markov Gragph
the probability that E; will occur is not really a function

of whether or not E, cver occurred. The correlation is
therefore asymptotic to

1Tl|iTn R'k (7) - ;l-u:z’—ac Pipk 3 (7 - ”’0) (26)

This has the spectrum of some periodic component,
which, according to Eq. (6), is

AL ]

I %
-y 5 5(r-7)
Combination of this result with Egs. (25) and (21)

gives the complete power spectrum of the aperiodic
Markov process:

c-1 3 |5 em(2)|s(-2)

+;l; 'é‘ | Hi (N2

(27)

+—%Re
f,

o

.\3 :v.. piH; () Hu(f) Pix (f"“’")]
i-1k=1

(28)
The notation used in Eq. (28) is:

8() = kthc Dirac delta function
P1 * = 2 Pa =.the starionary probability distribution
" of the Markov chain

Page 8

iy = the ptoBability that the signal b;(r)
- occurs at the nth transition after the
occurrence of the signal b, (1)

Py = 3 pipe

(9
H,(f) =f b (1) e-i=*1t dt
by (1), - - - , by (1) = the set of modulated signals

Notice that the first term (spike spectrum) of this
equation vanishes when

M

= pH(f)y=0 (29)

u

which implies that a necessary and sufficient condition
for the absence of spectral spikes is that

. pibi(8) =0 (30)

i

7

The discussion here has been devoted to the physical
aspect of the Markov spectrum. A more rigorous treat-
ment may be found in Appendices A and B.

The modulated set may be regarded in the frequency
domain as a modulated vector H (f). This vector has a
conjugated, weighted transpose [pH*(f)]J*. With these
notations, Eq. (28) may be rewritten

c0=11% panr 3 o(s-2) b

+ ;Z;Re {[pH* (NI" P (=) H(f)} (1)

Basically, there are two types of signals y(f) which
will be discussed in the remainder of this section. These
two classes of signals are defined in terms of the manner
by which they are generated.

Each class is defined in such a way that certain sym-
meiries exist, in order that certain simplifications of the
spectral equation may be made. The first class is desig-
nated “negative equally probable,” and consists of that
class of Markov processes for which the first and third
terms of Eq. (28) vanish. The second class, designated
“negative equally probable, same sign slope,” consists of
those Markov processes for which Eq. (30) is satisfied
(no spectral spikes), with transitions arranged so that the
slopes at the:transition times do not change sign. The
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behavior of those processes will become more apparent
upon detailed study of each in turn.

B. The NEP Process

A signal y{f) is said to be an NEP (negative equally
probable) process if (1) for each element h;(f) of the
modulating set {h; (f)} of a Markov process, —h; (¢) is
also in the set, and (2) the stationary probabilities on h; (f)
and ~h; () are equal; also, the transitional properties of
h; (t) are the same as those of —h; (t). That is, pi = p..
whenever h;(t) = «+h,(t), and h(t) = =h,(t).

This process has been specifically defined so that there
are no spectral spikes and so that the transitional prop-
erties th~mselves do not affect the over-all spectrum. In
this case, as a direct result of substitution in Eq. (28),

the spectrum is

=1 rH NI (2)

Note from this equation that the over-all NEP spectrum

is merely the weighted sum of the energy spectra of each’

individual A; (f) in the modulated set. It is sufficient,
therefore, to have a knowledge of the bhehavior of each
component p;|H,(f)|* in order to predict the spectral
density of the whole process. This is not true, in general,
for the more complicated NEPS process.

Example 1: NEP Sinusoids

Consider the NEP process, which has the following
properties:

b; (1) = sin (wis + &)

1
P = ;=Pi
___ﬂ."l’
“i—_';-
u=.27f

with n; integral; then, by Fourier transformation,

Hi (ﬁ =
®; COS 4: + fwsin é; 2(])(-”1) smg————z, ],U-mn
o (;3)

and, therefore,

) [ )
) ( 0.) (H: (39)

Note here that the phase angle ¢;, by which the sinusoid
is shifted with respect to the Markov sequence, is of great
importance in the region (« > > «;). In fact, for any ¢;,
each term of Eq. (34) is enveloped by

G(==3%

4 oicostd; + w?sin® ¢;

al, (u‘ - u’)'

The Equation shows that if $; is non-zero, or is not an
integral multiple of =, then the spectrum ultimately
decreases 6 db/octave. When ¢; is zero or n=, the spec-
trum falls off at 12 db/octave. Note, however, that the
rate of approach to the 6-db asymptote is determined by
&, in that for ¢; near zero (but non-zero), the spectrum
seems to approach the 12-db limit; but as « becomes suf-
Hciently large, it ultimately changes over to the 6-db
Iimit. That is to say, the density function chooses a cross-
over frequency . at which it changes from a 12-db to a
6-db /octave asymptote. This occurs at

o = wi(l +csc ;)

w; v 1 +cscc@;

o= X (36)

The curve is asymptotic to 12 db/octave up to e,
bevond which it then becomes asymptotic to 6 db/octave.
In the two limiting cases, ¢; =0 and ¢; = =/2, the curves
have only one asymptote, because «, is elther at infinity

orat o, {2,

Random phase. When each ¢; is considered to be a
random variable, uniformly distributed over the range
(0-2x), the resulting spectrum is the average over this
range; that is, each term is of the form:

2T

G =[;’Gi(f,¢i)P(¢i)d¢i =f- —"‘:Gi(f-¢;)d¢i ‘

[T [+
ii=alee)

(37) -

Page 9
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This result is important when compared with the results
of the next part of the example.

Concolution of spectra. Let the signai y (#) be generated
by multiplying a sinusoid x(¢) by a Markov segquence
m (t) of ones and minus ones. This signal, y () = x () m(¢),
has autocorrelation

Ry () =E[x()x(t + r)m(t)m (¢t + 7)] (38)

Let it be assumed that x (f) and m (t) are independent;

if such is the case, then the above equation facters into

R, () =E[x()x(t + r)]E[m{t)m(t + 7)] = R, (7) Ru(7)
(39)

It is well known that functions which multiply in the
time domain convolve in the frequency domain:

6= [e.6a0-04 (40)
The Markov sequence itself has spectrum
. oty \?
sin '2—
G" (f) =1f, p (41)
El
and the sinusoid has spectrum
G.(N=2BG¢-fH)+3(f+1)] (42)

Their convolution is

sin(";“' )lo ’ 1 4-(-::— )
(=52)~ | [(1+=

if «; = zn/t,, with n integral. Comparison of Eq. (43)

with the results of Eq. (34) shows that the two functions

xz(f) and m(t) are not really uncorrelated, but for
o > > wy, and ¢ 7 0, the same shape spectrum is obtained.

G, (==

In fact, it is seen that when ¢; is equal to =/4, Eqs.
(34) and (43) are the same; also, Eq. (43) corresponds
exactly to the case of Eq. (37), where ¢; is a random
variable, uniformly distributed over the range (0-2x).

Page 10

Example 2: NEP Square Waves

Let h; (t) be a unit square wave of n; half-cycles per
t., and p; = 1/a. Then, designate w; = niz/t,.. In the
frequency domain,

. wly
sin P
H,(fy == 27 ) p-dtterznd B p-ittesnimik/ng
n; wl, k=o
: 0.
2"; (44)

The power spectrum is given by

G(f)=i“_é"l‘ iﬂ; f—) z

x [ni + 2:% (n: —q)cos("

o [
Note that this is asymptotic to 6 db/octave when o = 2zf
is large.

The spectra for single NEP sinusoids and square waves
are plotted in Fig. 5 for comparison. Note that the 90-deg-

shifted sinusoid distribution falls off at approximately the
same rate as the square wave.

C. The NEPS Process

A signal y(t) is said to be an NEPS (negative equally
probable, same sign slope) process if (1) both h;(f) and
—h; (t) are in {h; (t)), their stationary probabilities are
equal, and the transitional properties are such that
Pi; = pre if hi(t)= —h,(t) and h;(t) = —h.(t); (2)
hi (0) = hi (t.) = 0 and (3) the slope of y(#) does not
change its sign at transitions.

By these axioms, the NEPS process not only has an
absence of spectral lines but also provides the possibility
of a smoother transition between wavcforms in adjacent
positions of the output. The process has been defined so
that the slopes at # = 0 and ¢ = ¢, exclude certain transi-
tions. The slopes at cross-over times allow the set {h; (1)}
to be partitioned into 4 subsets:

{ha} = {b. (t);slope (+) at #=0,(+)ats,}
{hg} = {b;(+);slope (+)ats = 0,(~)ats,)
{by} = {—ba}

(e} = {—4p} (46)

UNCLASSIFIED
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The transition matrix P is partitioned in the same fashion:

« p: 0 '
_ __o__c_)_ Yy _&_|_ B C
F= H [ C B ]

R
ow

(47)

The NEPS-process power spectrum (see Eq. 31) is given
by the Equation

G =72'§, rIH DI
+-£-Re{[1’."_;l’ﬂ BIE(Z)[g;]}

which involves positive waveforms a and g ouly, with

(48)

[ a B = 3 E~
E- , z=e#%% and E(z)= 3 E*

: —E w=1

Y ] (49)

This result is derived in Appendix C.

As a special application, consider the case with all
eligible states equally likely (all non-zero elements in P
are 2/a). The matrix E is composed of g rows of +2/a
and r rows of — 2/a; that is, there are ¢ “even™ wave-
forms and r “odd” waveforms. Direct calculation shows

that
E=lg=nm ’(—) (q+r)HE 0

The matrix E (z) is the converging series

o« —_ . . E
E@=:iE3(LL) »=—— (5
Py q+r e

' (q+r)z

Thus, tho third term of Eq. (31) is

pHTP () H =4 [ ——lsm0-3mm
HemN L

qtr

X [ZH.(f) + SHp ()] (2

Page 12

This NEPS process, therefore, has spectral density
2 @
" 3O o

X Red [SHL(f) - EH NIZH, (f)+2Ha(f)]

e-i2%lte
l B (

with sums only over positive waveforms a and 8. For
the simple case for which ¢ = r (equal number of wave-
forms in {h.{D)} and {hg(1)}), the spectrum reduces to

(53)

-jztl te

G(f)——-E [H (DI +

d‘l
x Re{[; HL ()~ SHN]
X [? H, (f) + % HB (f)] e‘”""} (54a)

Clearly, the NEPS process is defined in such a way
that the modulated set cannot be composed entirely of
even waveforms, for if it were, the inverses in the set
would never be sampled. However, they may all be odd
waveforms; in this case, g = 0:

Example 3: NEPS Sinusoids
Consider a NEPS process described by

b, (1) = sin(w;t)
a = 4, with

L
." — e
1,

so that n, is even and n. cdd. The transition matrix P is

(53)

-0 O
- DO e
O o O
D - O
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Evaluating Eq. (54a) for this case,

= -21’—{“1‘(})!2(1 + cos wly) + |H. (f}|2 (1 — cos aty)

(Dlsin ot}

(6)

The H; (f) are given by Ea. (33); the spectrum is

o=z =) e o

Notice here that as « grows large, G (f) decreases approxi-
mately 12 db/octave, and that G (f) falls off most rapidly
near the fundamental peaks if n, .and n. are adjacent
integers.

Example 4: NEPS Square-Waves

Consider the case described by the matrix in Eq. (55),
except let the modulation be unit square waves of n,
and n. half-cycles per ¢, period. The H; (f) are given in
Eq. (44). Upon substitution of these values into Eq. (56),
it is found that the spectrum of this NEPS square-wave

proc§5 is
o Js ==

i n} (

x| m+2 ;2' (m: - 7)‘05[(m:

—j[Hi (N H:(f) - H: () H,

) o]
' Slﬂ"‘ ('—') Slﬂ_ ( )
S EON EG

x5 gin [(m*l ZL+1)°""+(:—k);—]

ko mco

(38

This formidable Equation has been solved by a digital
computer for several values of n, and n, (the curves are
shown in Fig. 9).

D. Observation of Spectral Spikes

As may be seen from Eq. (28), the spectrum may, in
general, be thought of as being composed of two parts:
a spike-spectrum G, (f), and a continuous spectrum
G.(f). In both the NEP and NEPS, probabilitics have
been chosen to eliminate G, (f). However, now consider
the case for which the weighted sum of the waveforms
does not vanish. In particular, if the stationary proba-
bilities between a waveform h; (f) and its negative differ
by an amount ¢, then the continuous spectrum does not
change appreciably if ¢ is small. The power contained
in a given band Af, directly attributable to G.(f), as
compared to the continuous spectrum in this band, is

lG@ﬂ
A(fAf) = (59)

/Gmﬁ

Here it is assumed that only one spike lies in the of
range. A receiver sees the spectrum as

Gree () = (1 + X) G () (60)

In order to evaluate this Equation to obtain an order-
of-magnitude picture of the spectrum where spikes
should appear, let {(h:(t)} contain only =+h;(t), and
assume G. (f) to be fairly constant within the Af interval.
The ratio for an NEP process is

(1)

if ¢ is small. This says that at points of the continuous
spectrum (when G. (f) is about constant), the deviation
due to spikes is small if ¢ is small.

This analysis has considered that the time of integra-
tion in a given bandwidth Af was infinite. Frequency
analyzers which publish spectra based on short integra-
tions may, therefore, show great deviation from the
expected behavior discussed here. In order to cbtain
reasonable looking results from an analyzer, integration
time must be long compared to the reciprocal of the
analyzer bandwidth,

Pege 13
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Hl. PSEUDO-RANDOM MODULATION

A. Random-like Sequences

Pseudo-random sequences are sequences which pos-
sess certain qualities of randomness, yet are determinis-
tic and periodic in nature. Specifically, their properties
are such that the sequence appears to be some random
sequence (such as Markov). These random sequences
may be gonerated in many fashions, most commonly by
recurrence techniques applied to shift registers. If such
a sequence is binary, it is known as a PN (pseudo-noise)
sequence.

In restricting the discussion here to periodic sequences,
it is evident that no continuous spectruin will be present
in G(f); rather, pcwer will be concentrated at discrete
frequencies. Also, these periodic sequences {as yet unde-
fined) are such that, in general, P* # (p'y’) = P'™, as was
true for the Markov chain. The quantities p'3’ are now
relative frequencies of transitions per period

In order that a sequence be pseudo-random, it is neces-
sary first to specify relative frequencies of occurrence
for each state in the sequence; second, one must specify
the type of transitions which may be made between the
states; and third, some property must be assigned to the
sequence in order that it appear random to a certain
degree.

Although these specifications are usually interrelated,
the first, relative frequency, is usually fived by the man-
ner in which the sequence is =cnerated. The second,
transition, is dependent upon what modulation charac-
teristics are desired and what randomness properties are
to be assigned to the sequence. The random properties
are conveniently established by the correlation functions
Rit(7), as described in Sec. IA. The correlation matrix
R(nt.) has heretofore been given the netation (p;p'y’
for convenience.

If it is desired that the sequence appear Markovian,
then it i$ merely necessary to insure that the Rix (+) of the
two sequences have approximately' the same shape over
a range (—T/2 = r = +T/2), outside of which the non-
periodic correlations are zero. As discussed previously,
non-zero values of correlation outside this range, if con-

"Recent work at-the Jet Propulsion Laboratory has shown that no
periadic sequence may satisfy this property exactly. .

Pege 14

stant or fairly constant, do not disrupt the s,.,.ctra greatly,
except for causing some discrepancy in the de levels.

The only problem which arises in characterizing a
pseudo-random process (which is to appear Markovian)
is the approximation of the conditions given above.
Luckily, there are several methods by which this may be
attempted. Perhaps most widely known are those methods
which employ linear recurrence techniques to a-level
shift registers. Several non-linear techniques are also
known, which exhibit many desirable characteristics.

For certain Markov processes, the corresponding peri-
odic’ process is easily found. For example, a binary
Markov sequence which has two-level correlation is easily
approximated by the PN sequence ‘which also possesses
two-level correlation. In other cases, however, the approx-
imation is more difficult and somewhat more crude. For
these reasons, the particular sequence which gives a
Markov envelope to spectral lines must be chosen care-
fully.

B. Linear Recurring Sequences

In this Part, the power density function of a certain
type of sequence is developed. In general, the sequence
does not behave properly to produce Markov properties.
However, in certain cases, very desirable results can be
obtained by using such a sequence to modulate a set

{h: (1)).

Given a sequence, {b;}, and a set of ccefficients, (¢,
€, * ' * ,Cu), each composed of elements over a finite field -
K, the sequence is said to be lincarly recurring if all seg-
ments of the sequence with length m + 1 satisfy the
relation

i €ibu-i=0 (62)
Such a sequence is easily mechanized by shift registers,
as shown in Fig. 6.

Much work (Refs. 6 and 7) has been done on such
sequences, and an abundance of information is available
on the subject. The major portion of the theory is beyond
the scope of this report; however, a few significant prop-

erties bear discussion.
R
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Fig. 6. Method for Generating Linear
Recurring Sequences

First, due to the fact that the elements of the sequence
lie in a finite field, K, the number of states E, - - - E,
must be a power of a prime. In particular, if the number
of states is a, then K is the field with a elements, and
a = g* for some prime ¢ and positive integer k.

Such a linear sequence which is of maximum length p
is called an m-sequence, of level a and period p. The
m-sequence which satisfies Eq. (62) has period p=a® — 1,
and all states except one occur a™-' times during this
period. The excepted state is the one corresponding to
the “zero” of the finite field, which only occurs a®-* — 1
times; this state shall be designated E..

The subsequences {Ei - - - E;}, k elements long
(k = m), each occur a™-* times, except those in which all
E; are E,. Those occur a™-* — 1 times per period.

Another significant property is that the sequence
formed by adding to each term b; of a given m-sequence
that term of the sequence which is translated by r, b, .,
is the same sequence translated by some integer s; i.e.,

bi..=b; +5;., (63)

This is commonly called the “cycle-and-add™ property.

The frequencies of occurrence (designating E, as the
state corresponding to terms b; = 0) are

=2 _ptl, j= i a—
P‘—a"'—l— 7 (=12 ,a—1)
a"'~1 p+1-a

be="Fo = ap (64)

and the transition matrix is

1 1 1
a a : a
1 1 1
a a e a
P= » » . (65)
an-t a2 a1
| 4"t =1 g1 gt -

The transition matrices P are equal for all n 3£ 0 mod
s, s= p/(a — 1). When n=0 mod s, the matrices Pt
are composed of elements

.

Pl = 8 (k%) (66)

(see Fig. 7) for some primitive element A of the field (both
i and k are also members of this ficld), and § (k, A" i) is the
Kronecker delta. The primitive A is the element

A = blolb;'

m-SEQUENCE
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Fig. 7. Period-Norinalized Correlation Funclions
for the Linear Sequence b, = b,.; + b, ;s
Over One Period
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for all non-zero elements b, of the sequence. The weight-
ing functions G (f) are

e-Jumte '—Imul.)

Guulf) = -,‘-[p Pa

+p § 8 (£, A%) e-fmf-] (67)

Because of the Kronecker delta in this Equation, the last
term is actually -

E P e lrnul.a(‘ Ari) 2

—i-’uh

(68)

Notice that when 0 =a — 1, 3(k,A" ") = 8. If either
i or k is the zero, then 8 (k, A" i) = 8;; for all v. The spectral
density of the modulated m-sequence is

o6
x % a-2)

2 (=D g -1 3 3 mong)

t =1
x $ (-2
"t

LSS S mp s enena i |

« 3(r- 7))

When the sampled set {h; (t)} contains both h; () and
~h; (t) for all i=a, then the sums E 2 H (f) Hi(f}
vanish; this simplifies the spectrum somew’ hat, but in gen-
eral, cross terms still remain in the triple-sum term. When
such a simplification is made, the process is said to be
NEF (negative equally frequentj.

3 S H(HM - . (/)l’]

(69)

As a special case, let @ = 2 (PN sequence) with H, (f) =
"'Hg (ﬂ- 'n‘en -
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G =L 1" 2 s(f—;",—
- Lo 3 3(r-2)

(70)
If the PN sequence has a long period, the spectrum

appears to be the Markov process of two equally likely
states.

Figure 8 compares the binary NEP spectrum to that

- experimentally obtained from a PN sequence.

o T
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Fig. 8. Comparison of Normalized NEP and NEF
Spectra for the Case a =2

C. The NEFS Procass

The preceding Part has shown that, under certain con-
ditions, the Markov NEP process was approximated to
an amazing degree. The spectrum of the periodic coun-
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terpart of the NEPS process is determined by a somewhat
cruder technique; the envelope is slightly in error, but
the error decreases as the period becomes long. This less
elegant approximation is adopted in order that a linearly
recurring m-sequence may be used as a random-like
sampler of {h; (f)}. Although it may be possible to gen-
erate a sequence which will give results which look more
like a Markov process, m-sequences have be: previously
discussed and will, therefore, be used in this ireatment.
A periodic process is said to be NEFS (negative equally
frequent—same sign slope) if (1) both h; (f) and —h; (t) are
in {h; (t)} and their frequencies of occurrence are nearly
equal; (2) the transition frequencies between any two
states are approximately equal to the transition frequen-
cies between the two corresponding negative states; and
(3) the slope does not change sign at transition times.

Sequences are restricted to those in which errors in
frequencies of transition and occurrence stated above in
(1) and (2) decrease as the period lengthens.

In choosing m-sequences to modulate {h; (£)}, each of
the a, states E; of the m-sequence chooses between h; (t)
and —h; (f), selecting the one which has the proper slope
for transition. In this way, the set {h;(t)} must have
a = 2a, elements, g of which are even waveforms and r
of which are odd. Both ¢ and r are even-integers; also,
a, is chosen to be even, and a, = 2 for some positive
integer k. The period of the process depends on whether
an even or odd nwnber of odd waveforms occur per
m-sequence period. If the number of odd waveform occur-
rences is even, the NEFS period equals the m-sequence
pericd; otherwise, it is twice as great. The only state
which occurs an odd number of times in the m-sequence
is E.; therefore, h, (t) is set to be au even waveform, in
order that the NEFS period is p, the m-sequence period.

Because of the postulated symmetries (2), the analysis
given to NEPS processes also applies here, and Eq. (48)
describes the spectrum involved, with the exception that
the matrix E (z) is

E@)= SEm=

E = Bi»y — Cfm (71)

These matrices E™ are, of course, periodic, with
elements p{’* — pi*}..,- When n=0 mod p, E™ is the
identity matrix. When n=0mod s=p/(a—1), the
matrix elements are 1, 0, or —1, depending upon §, k,
and n. Using previous notation,

P - ::i'.clz =3 (E’ Ai) —~ 8 [‘- AT ( - %)]

(72)

For other values of n, E‘® behaves as

o Ar-1
E=(;_r) E+em;

Elements of the error matrix €™ have magnitudes on
the order of 1/p for large p and n == m. (See Appendix D
for discussion.) This is the type of expression obtained
for E™ of the aperiodic process, except for some small
error. When at least one even and one odd waveform
pair are present in the set {h; (1)}, and E, represents an
even pair, then the values for p{{* — pi*,,. ~~a/p due
to the fact that for long periods, roughly half the waves
are reversed per period, and at intervals of (vs) the
m-sequence correlations Rix(vs) are maximum or else
totally uncorrelated (Fig. 7). For long periods, these
terms are neglected, and the power distribution is

G(f) = %’;f—r”{[EPIH U)I][E (f— )]
-]

x[g H() -3 o

1=n<s

(73)

X[? H; (f) +§ H,‘(f)]

«5.00-2)

where the sums over « and 8 include positive waveforms
only.

(74)

The assumptions which have been made are that
the period is long, so that all p; are equal (within 1/p),
all non-zero p!y' are equal (within 1/p), and that
l(g—n/g +n]=<<L

As a special case, let g = r, with a binary PN sequence
operating in the fashion described. Thens = panda = 4.
Equation (74) simplifies to the approximate spectral den-
sity of the process,

Page 17
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cn=4 ‘{2 .1 + 3R] 11,1 - | O

2%

+ [(H: (/) H, (h ~H () H, () ,—m.]

<5(- 2} o

Here again, the envelope of the spectrum is seen to be
governed by a Markov process, within a constant multi-
plier, and the spectra appear to be the same to receivers
whose bandwidths are greater than 1/pf..

Because- of this “envelope™ relation between the two
processes, the spectra of Examples 3 and 4 are also exam-
ples of the NEFS process, when weighted by the proper
constant and multiplied by the delta-function series.

Figure 9 compares the a = 4 NEPS spectrum to that
experimentally obtained by PN modulation.

D. Other Random-like Sequences

Comparison of the delta-function envelopes of the
binary NEF and NEFS processes to the spectra of corre-
sponding random Markov processes shows that they are
the same, within a constant multiplier; also, in the limit,
as the periods become very great, the two become the
same, indicating that the long PN sequence is, as far as
its spectrum is concerned, very nearly random.

The PN sequence, by definition. has been set to be a
binary m-sequence and, as such, can only choose between
two signals in a modulating set. Since the PN sequence is
easy to generate, selection of waveforms in {h; (t)} by
means of Boolean functions of the shift-register states in

9 I

/N e — NEFS

e NEPS a

e NEPS >
————NEFS

HANIPN 7

A
|

\
0 \}A,

- A —= ) a == -

IATAYNRE ANERER
| \ A A

- Nyl }f “v’yf"\[\*

Fig. 9. Comparison of NEPS and NEFS Spectra for the Case a = 4
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a PN sequence (word detection) is sometimes desirable.
However, because of the cycle-and-add property (Eq.
63), these states may not have good correlation proper-
ties, and the spectra obtained in this sampling may be
totally unlike their Markov counterparts (as is also true
of the general m-sequence, a > 2). A better solution to
this problem is to provide word detection on several
independent PN generators of different periods.

2ot Propulsion Laboraiony

In most cases, these PN sequences, or arrays of PN
sequences, produce spectra comparable in some fashion
to Markov spectra. When such is the case, since detection
by conventional means iavolves sampling of data over a
bandwidth Af, spectra obtained from both Markov proc-
esses and pseudo-Markov processes appear to be the same
when the period of the pseudo-random sequence is large -
compared to the reciprocal receiver bandwidth 1/af.

Page 19
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IV. EXPERIMENTAL RESULTS AND CONCLUSIONS

A. Experimental Resulis .

The experiments based upon the preceding parts of
this Report were performed basically to determine the
theoretical appearance of the spectra and secondly, to
verify by actual spectral measurement that the theoreti-
cal curves were achieved to some degree. The first experi-
ments were performed on an electronic digital computer
for the N .rkov NEP and NEPS sine and square-wave
processes. Such experiments were carried out only on
simple cases, in which the mathematics involved did not
require long programming time or lengthy calculation
within the computer itself. The results which were
obtained are plotted as the Markov spectra of Figs. 5,
8, and 9.

All the processes investigated in this way were binary
processes (i.e., the sequence was binary), and the carriers
were cither sinusoid or square waves. Only binary cases
were considered for two reasons. First, for the NEP
preeess, any a-level process is merely the weighted sum
of binary processes (see Eq. 32); and second, the Markov
and linear-sequence processes only correspond for binary
sequences.

The linear m-sequence spectra were measured using a
sweeping-oscillator type of spectrum analyzer. The actual
pseudo-random modulated square-wave process was syn-
thesized on a miniature luhoratory digital computer, as
shown in Fig. 10. This computer is basically a bank of
dynamic “and” gates, “or” gates, and delay lines, readily
programmed to form flip-Hops, sequence generators (see
Fig. 6), and carricr generators (square waves).

The period of the m-sequence was set so'that the width
between ‘spectral lines of the process was less than the
analyzer bandwidth. These analyzer curves are shown in
Figs. € ai:d 9 for both the NEF and NEFS processes,
and are compared to their Markov NEP and NEPS
counterparts.

These plots speak fairly well for themseves. They
show that, as predicted mathematically, the random and
pseudo-random spectra agree quitc closely. It must be
remembered that one of the curves (Markov) is calcu-
lated and that the other (m-sequence) is measured, and
therefore some tolerance due to analyzer bandwidth is
in order. Such a discrepancy was not thought to be great,
and the error encountered was not even calculated.
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Fig. 10. Block Diagrams of NEF and NEFS
Square-Wave Process Generators

B. Conclusions

Random and pseudo-random sequences may modulate
signals in such a way that concentrations of power at spe-
cific frequencies are not apparent. If the autocorrelation
functions of the two sequences are closely similar over a
period of the pseudo-random sequence and the random
sequence correlation is fairly constant outside this range,
then the spectra resemble each other. Furthermore, if the
period of the deterministic sequence is greater than the
reciprocal of the receiver bandwidth, the periodic process
has a spectrum which appears to be continuous and the
sume as that generated by a purely random process.

As simple as this seems, it may be shown that a periodic

process never possesses exactly the proper correlation
matrix for a Markovian spectrum. However, approxima-
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tions to this behavior are possible, as has been shown
for binary m-sequences. The corrclations of m-sequences
in general, however, do not look Markovian (see Fig. 7),
and therefore, the spectrum of a process modulated by
these sequences is not cxoected to look like a Markov
spectrum. The problem encountered in attempting to
make the two spectra appear the same is not an easy one.
In the sense that general m-sequences do not offer the
desired characteristics, Boolean functions of particular
states in a binary m-sequence probably do not give
desirable results either.

When transitions between waveforms are such that
negative waveforms are as likely to occur as positive
waveforms, the power spectrum of the corresponding
process is merely the weighted sum of the energy spectra
of the sampled waveforms. When these waveforms are

vizion Laberatory

sinusoids, the phase shift between the sinusoid and
sequence determines whether the spectrum decays at 6
or 12 db/octave, and the point at which a cross-over
between 6 and 12 db/octave occurs. For square waves,
the spectra decay at 6 db/octave.

When transitions are arranged so that slopes cannot
change sign at transition, the spectra decay at the same
rates, but larger, more pronounced peaks located near
fundamental frequencies of h; (f) occur. This means that
these processes are doubly important: first, from the point
of view that such a process may be easier to mechanize
by reason of the smoother transition, and second, from
the point of view that it is possible to create a broad band
spectrum which falls off rapidly outside the band. To a
transmitter, this means that power is not wasted outside

the desired band.
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NOMENCLATURE

& = number of states.
A = column vector of the positive waveforms in
the frequency domain.

B, C, D, E = matrices used to derive the NEPS spectrum.
b; = sequence element chosen from finite field K.
¢; = feedback coefficients for the linear sequence.

~ E, = ith state of the sequence.
E [X] = mathematical expected value of X.
§ = frequency.
G (f) = output spectral density. )
G (f) = cross-spectral density of the sequence states.
h; (t) = member of a set of modulated signals.
H; (f) = Fourier transform of k; (¢).
H = column vector of the frequency-domain
states.
i,j.k,m,rs,0 = integer-valued indices.
I: = % X k identity matrix.

=V

K = finite field.
L = length of the sequence.
r. = number of half-cycles per switching period.
N¢% = number of times state E; occurs at nth tran-
sition after E;.
p = period of the sequence.
0 = relative frequencies at which state E; occurs
at nth transition after E;.
P (z) = generating function.
Pt = pth-transition matrix.
P (z) = generating matrix.
Rix (r) = cross-correlation function.

R{m) = correlation riatrix.

s=p/(a—1).
S = sequence.
t = time.

t, = switching period.
x(f) = a periodic process.
y(t) = output signal.
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NOMENCLATURE (Cont’d)

Y« (f) = Fourier transform of yr (t).
a, B, v, e = subscripts of the waveforms h; {f) denoting
class.
3 (f) = Dirac delta-function.
A = increment.
A; (f) = Fourier transform of 8; {#).
¢ = an arbitrarily small quantity.
{ = convelution variable.
A = ratio of spike to continuous spectral power.
A = primitive element of field K.
r = correlation variable.
¢ = phase angle,
« = 2zf = angular frequency.
* == complex conjugation.
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APPENDIX A
Derivation of the Markov Spectrum

Proof of Eq. (28): The signal y(¢) is obviously a meas-
urable function of £. Under this condition, if

s0r=tim L[S0y e0a  a

exists for all r, then there exists an integrated power

spectrum?
5(w) = %[.¢(r)§—i‘—1§?—f)dr; =2af (A-2)

If y(t) were a continuous stationary process, it is well
known that ¢ () = R(t,7) = E [y (f) y (¢ + r)] with prob-
ability 1. However, R(t,7) in the present case is not
independent of t. In Appendix B, it is proved that
¢ () = R (v) with probability ‘1, where

R(z) = R(m, +1)

,k(rz)/ by () b (1, + 1) d2y

fo ik

+ ay(n+ 1)/"’,]‘ ) b (4 + 1 — 1) d1, (A-3)
and
Pidix ifn=0
ai(n) = {pivi ifn>0
P‘P‘ lnlfn<o (A-4)

Here, 7 has been decomposed into an integer times ¢,
plus a part t with 0=t < t,. The cocfficients p!2’ consist
of periodic terms plus terms which tend to zero exponen-
tially (Ref. 4). Correspondingly, R (r) will have periodic
components plus a part which has a finite integral of its
absolute value. The first part corresponds to jumps in
S (), and the second part corresponds to a part of S (w)
which is the integral of a spectral density (Theorem of
Plancherel).

3Sce Ref. 2 (Chapter I, Section 3). In the present case, it
can be shown that y () also possesses an integrated spectrum
(Chapter 111, Sections 4 and 5).
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The Periodic Part: For aperiodic Markov chains (see
Ref. 4, Chapter XV), p'2*~> pi, so that the periodic part is

,k s [/ by (t,) by (1 + 1,) dr,
/ b (f,) bt + 1, — n)dt,]
(A-5)

for 0=t=t,, and the transform is

ay = [ [ / bi (1) b (8 ¥ 1) e S
tk 1 Io ’o o

+ Zl -/_;I;,- (t) ba(r + 1, — 1) 5 dt,dt]

(A-6)

In the second integral, if we replace t by £ + t,,

4= ',MU-’-/ [[ By (1) bu(t +1,) e ",',”'dr,]d:
. A

.

The expression in brackets is zero for |t| > t,, so that the
limits can be replaced by +ow, and it immediately
follows that.

- 3 2P () () =2 2 G2

(A8)

The Spectral-Density Part: The corresponding part of
R(nt,+ t) is
1 e e
- ? [4ic(n) — pipx]) j; b () b (¢ + 1,) d1,

+ fai (n + 1) = p.pu] f :b,- {(t) b (5, + 1 — 1) dsy
(A-9)

The integral which gives the Fourier transform may be
split into intervals to give
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G (w) = ;lt i:‘-‘-ﬁn {[a;k (n) ~ pipr] e-tonte

wik=

‘ot (7Y
xf' f bi (W) b (t + 1) e-9=t de d1,

+ [ai(n + 1) — pipa) eionte

/ ” / bi(t,) b (2 + 8, — to) e Iot di dt }

(A10)

In the second integral, replacing n by n+ 1 and ¢ by
f + t,, and using the same argument used in evaluating
a,, gives )

Letting e-/#»ts == 2 the infinite series becomes (see Ref.
4, Chapter 18)

A r
Pi (Bix — pu) + pi Lpik @ - ]'E_':—z;]

1 -2z

+ I’k[”ka (=

= pi8a + piPix (2) + pPri (277)  (A-12)

Finally,

G(w)—— = [p:®

igk=

ik + P' ik (‘-’-'.)

+ piPyi (erio')] H () Hy (@)
(A-13)

G () —'l; él :_i_z[“ik (n) = pipi] /=" H (w) Hy (o) The theorem follows from this and the expression for
o (A-11)  the a..
APPENDIX B
Derivation of the Formula for Time Autocorrelation
Define Now define

ser=tim L [050+ 90 @1)

Since y (t).is bounded, the limit exists if, and only if, the
following limit exists:
+Nte
lim ———

N-+m ZN’ (B.Z)

y(l)](t+ 7)dr

If + is »;.'ritten in the form r = nt, + ¢,, where n is an
integer, such that 0=r — nt, <t,, and the integral is
. decomposed into intervals of length t,, then

S(nty+ 1) =
N

lim = 1 g' /..](ml,,'+l)][(m+n)l,+l+l,]dl\

Nomio ZN’o "
(B-3)

_f1 if the state during [m#,, (m + 1) 1,] is E;
Di (m) = 0 otherwise
then
(B-4)

y(mty + 1) = ::;," D; (m) b (1)

and

d(nt, +1,) = hm E D; (m) Dy (m + n)

o
ZN'n i tzl =N

So-ls R
x/ by (f) b (2 + 1) dt + Dy (m) D (m+ n+ 1)
x [

There are a finite number of terms of the form

by () b (2 + 1, — 1,)d2 {B-5)
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“'2‘ D; !m!D,,!m + ﬂt

el 2N

and their coefficients are constants as far as the variables
m, n, and N are concerned, so that the limit becomes

N-
¢("’o+'1)—;1- ?:‘_ [ lim } —Q’M]

N-w ---l
x/ ()b (¢ + 1)1

"z.‘ [lim \2- D;im)DkZ%n’+n-.i-l)]

N-ox W=-8

\l—

X / mb,- () bt + 1, — 1) dlA (B-6)

The limits on the integrals can be made infinite because
the integrands vanish outside the actual range of integra-
tion, .

Now, suppose n = 0; then D, (m) Dy (m + 0) = 8,:D; (m)
lim 2 M =pidix

XN+ m=-§

(B-7)

with probability 1, because the strong law of large num-
bers holds (Ref. 4). If n >0, the proeess with state
descriptions

Eiiyoooiin = (EipEip - - ;) (B-8)
is a Markov process with stationary distributions
PriEi i, ---.id = PilisiPisi, * * * Pin_sin (B9)

The probability that D, (m) Di(m + n) is one is
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i E P' [Ei' E;." *. DEk] (B-lO)

But that is just p; times p{i’. Using the strong law of
large numbers, this Markov chain yields

llm 1 D, gsz,,(m+n!_PPm

¥em -=-'

with probability 1. A similar discussion applied to the
case n < 0 gives

(8-11)

Iim “ R.M__l Pkp ;-' (3-12)
N-wax l:—,\
with probability 1.
Define
p,-B,-. ifﬂ =0
ap(n) = pipi>  ifn>o0 (B-13)
bpE™ fr<O
Then for each n,

p,[ lim MBM =apn (,,)] =1 (B-14)
Nz -——-
But there is only a countable set of values of n, so that

[ﬁ,,,u T Qiiﬂ)_o_k('_”_ﬂ').=,n(,,)] -1

N 21\ E e ] ZN
(B-15)
Defining
Rnt,+ 1) = 71- ._ aix(n) f“ by (8) by (2 + 1,) dt
+ a;(n) [mb,- (N be(t + 1, —1,)dt

(B16)

the preceding statement becomes Pr{R(r)==¢(r)] =1.
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APPENDIX €
Derivation of the NEPS Spectrum

Assume that the modulating subsets ‘{h.) and {hs}
contain ¢ even states and r odd states, and designate H
to be the column vector of the frequency-domain states:

H.

H’ lk
H= = A
—Ha “I;

1)

where I, is the unit matrix of dimension k = a/2, and A

A =

Since the stationary probability for h; (t) is the same as
for —h; (t), designate the vector pA tc be

H,
pd = [I’. ]
psHs
The quantity to be evaluated is (pH*)T P (z) H, which

appears in the third term of Eq. (31). Clearly,

I,
'k] A (C-4)

(C2)

(C3)

(pH*T P(2) H = (pA*)T (I, —L) P (z) [

The matrix P (z) is evaluated from P by Eq. (25). Since
the P matrix is of the form

[ ]

it may be verified that P* is also of the same symrﬁetric
form. Therefore the generating P (z) matrix is symmetric

also.
[ B(z) € (Z)]
P(z) =
C(z) B(z)

Substitution of Eq. (C-8) into Eq. (C-4) gives

(C3)

(C-6)

QHYP(H=2(pA) [B() - C(:]4  (C7)

which is now an equation involving matrices of order
k = a/2 instead of ath-order ones. Define matrices D

and E to be
D=B+C E=B-C (C-8)

so that

Ik ’l’ Ik '_’k
F=i ;D[lk Ik]+E[ —Ii 't]% ©

By direct calculation,

’k 'g ,t "&
n — " " C-
=i ZD [Ik 'k]+£ [_’t Ik]§ (10

Also
It lg 'k —’t
P(z)—{;D(z)[Ik I,_.]+E(Z)[ L I,‘]z
(C11)
where it is noted that
B{z) - C(2) = E(2) (C12)
and hence,
(PH*) P (2} H = 2 (pA*) E(z) A (C13)
But from Eq. {C-8), it is known that
B
E=[ ] 14
-y -¢

and, therefore, E (2) = § E* z~; then,
LR | - .

H,
(pH)" P(2)H = 2[p . H;, psHE| E (2)[ u ] (C-15)
[}

Substitution of this into Eq. (31) gives the desired result
(Eq. 48). -
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APPENDIX D
Derivation of the NEFS Spectrum

Consider the process in which an a, level m-sequence
samples the set {h; (t)} in such a fashion that each term
of the sequence E; selects either h; (£} or —h; (t), so that
the slope does not change sign in transition. Each of the
a, states occurs a]"! times, except state E,, itself, which
only occurs ay-' — 1 times. These differ by only one part
per period. Similarly, the states of the NEFS occur
1 (ar-') and {%ayr-' — 1) times per period.

In the m-sequence, the states E; E; E. E; occur in
sequence a®* times (if all i,j, m, k + a,). Select E; and
E; to be a specific transition, and assume that E; is a
positive even waveform and E; is a positive waveform.
Then such a transition occurs

NP ~'—l-a"' ‘(g2 + 1)

NEl.., = g4 (297) (D-1)
per period; hence,
Eﬂ' = P:ﬂon. - Pgﬂolx = ;;Edu :;)
( (b= Prokee) (D-2)

By symmetry, this is also true for all E{'. This error in
making the above statements is on the order of 1/p.
Similar reasoning shows that this approximation is appli-
cable up to n = =m and bevond, within a few errors
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also on the order of 1/p. If these errors are néglected,

E(z)—*- 2 ( )z“]

,1 [2 Eto zmp] -2 zv

1
1-— -r
+ q +r x
-" Ez 3 2z
L 1 _ "z -0t
(q +r
, [ 2 Etrs) z(n) ‘2 zr (D_s)

Upon substitution of = = e-i="_the infinite series of expo-
nentials becomes a series of delta-functions in the frequency
domain. If the period is long [{q — r)/{g + N} * <<,
and therefore this term is negligible. Substituting this
E (¢7=*) into Eq. (48) gives the spcctrum in Eq. (74).

It should be noted that errors encountered in this
analysis are only estimated to be of the order 1/p. For
E! up to n = -m, this estimation is fairly good. Beyond
this point, certain sequences do not exist, and therefore
decrease the factor multiplying E. This means that the
factors [(g — r)/(g + r)]* are somewhat in error but are
probably less than the estimated [(q —r)/(g + )}~
For this reason, it is felt that in dropping the term
[(g — r)/(q + 1)]*-1, no great error is committed.
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